
Journal of Engineering Physics and Thermophysics, Vol. 71, No. 2, 1998 

S T R U C T U R E  O F  P O L Y M E R  N E T W O R K S  AS A 

P E R C O L A T I O N  S Y S T E M  

G. V. Kozlov, V. U. Novikov, 
M. A. Gazaev,  and A. K. Mikitaev 

UDC 539.213 

With the use of  the assumption that the structure of  an amorphous polymer can be presented as a set o f  

frozen locally ordered regions surrounded by a loosely packed matrix, it is shown that a structure comprising 

a percolation cluster is f o r m e d  in epoxypolymers, and in this case the glass-transition temperature is 

associated with the critical percolation probability, and the glass transition itself is considered as a phase 

transition. 

Introduction. Percolation models are widely used for the description of a number of physical problems [1 ], 

including polymer behavior [2, 3]. These models are distinguished by simplicity and clarity [1 1, and their 

application to the description of the polymer behavior makes it possible to use the well-elaborated mathematics of 

these models in the description and prediction of polymer properties. In the present work, the cluster model of the 

s t ructure  of the amorphous polymer state [4, 5], which we successfully used earlier in derivat ion of 

structure-properties relationships for epoxypolymers [6-9], is used as a quantitative model of the structure of 

polymer networks. It is assumed within the framework of the model that the structure of the amorphous polymer 

phase can be presented as a set of locally ordered regions frozen at the glass-transition temperature Tglass 

surrounded by a loosely packed matrix [4 ]. In turn, the locally ordered regions (clusters) consist of close-packed 

collinear segments of different macromolecules, being essentially an analog of stretched-chain crystallites (SCC) 

interconnected by passage chains comprising the supporting skeleton of the polymer. The formation of the cluster 

structure at Tglass abruptly changes the properties of the amorphous polymer, thus endowing it with the rigidity 

typical for a solid polymer [10 ]. Therefore, one can assume that in this case Tglass is associated with the critical 

probability [11 ] of formation of an infinite (within the limits of the sample) cluster. The objective of the work was 

to check this hypothesis using amine- and anhydride-solidified epoxypolymers as an example. 

Results and Discussion. We investigated epoxypolymers (EP) based on bisphenol A diglycydyl ester (t~D- 

22). Solidification was carried out by 3,3'-dichloro-4,4'-diaminodiphenyl methane (EP-1 composition) and 

isomethyltetrahydrophthalic anhydride in the presence of tris (dimethylaminomethyl) phenol as an accelerator 

(EP-2 composition). The topological structure of the EP was varied by changing the solidifier-to-oligomer molar 

(equivalent) ratio Ka from 0.5 to 1.5. This made it possible to change the density of nodes of the chemical bonding 

network v n. 
Experimentally established stepwise temperature-temporal solidification regimes making it possible to 

achieve the most complete transformation degree were as follows: (393 K for 2 h) + (423 K for 3 hours) + (443 

K for 4 h) in the case of EP-1, and (393 K for 2 h) + (423 K for 4 h) + (443 K for 12 h) in the case of EP-2. 

Deformation-durability characteristics were obtained in uniaxial pressing experiments at a strain rate of 5 mm/min 

(deformation rate -5 .56-10 -3 sec - l )  and temperature 293 K. No less than five specimens of each composition 

were studied. 
The glass-transition temperature of the EP was evaluated in the thermomechanical analysis carried out 

under conditions of uniaxial a pressing under a pressure of 1.2 MPa and a temperature variation rale of 2 K/rain. 

Methods for calculation of the cluster structure of polymers can be found elsewhere [4, 5 ]. 
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It is evident that the percolation-theory problem as applied to the cluster s tructure of polymers can be 

considered as a bonding problem [1 ], since the formation of an infinite percolation cluster in polymers can be 

considered as the formation of a continuous chain skeleton over the entire specimen [12 ]. Formation of nodes 

(locally o rde red  regions) also takes place; however, it does not have a critical character.  Thus,  when the molecular 

weight is less than a certain value, no continuous skeleton emerges when the same number  of nodes is formed as 

in a high-molecular-weight polymer, since molecular chains have length smaller than the interchain distance. 

Nevertheless, since we do not consider low-molecular-weight polymers, the problems of nodes and bondings become 

equivalent: the formation of locally ordered regions simultaneously means the formation of a continuous bonding 

skeleton over the entire specimen [11 l- 

As is known [I ], the critical behavior of the power Poo of an infinite cluster (probability that the node 

belongs to the cluster) upon approaching the percolation threshold x o is described by the scaling relationship 

e o o -  (X - Xp)/~ . (1) 

If the glassy polymer is considered as a set of Nseg statistical segments with length lseg (this is the length 

of segments in clusters [4 ]), then the parameter  Poo is associated with the number  of segments of the type entering 

into the locally ordered  regions or clusters Nc~ (the quantities Nseg and Net per unit volume are assumed there):  

Poo = N c l / N s e g  = ~Ocl, (2) 

where ~Pcl is the fraction of statistical segments entering into the locally ordered  regions, or the relative fractions 

of clusters. 

The estimate of the quantity ~Pcl can be evaluated using the following simple method. It is assumed in the 

model [4, 5 ] that, to a first approximation, Ncl equals the density of the cluster network of macromolecular  linkages 

Vcl determined from results of mechanical tests [13 1. Then the segment length per unity polymer volume Lc~ in 

locally ordered regions is determined as follows: 

Lcl = Vcl/seg' (3) 

where/seg is assumed to be determined as follows [14 ]: 

lseg = loCoo,  (4) 

with lo being the length of the skeleton bonding of the main chain [14] and Coo being the characterist ic ratio 

indicating the statistical rigidity of the chain. For the EP under  investigation, Coo values can be found elsewhere 

[151. 
The total length L of macromolecules per unity volume of the polymer is [16 ] 

L = S -1 (5) 

where S is the area of the molecular cross section whose value for the EP under  investigation can be found in [15 ]. 

Now we can determine the quantity Tel from the obvious relationship [5 ] 

~Ocl = L c l /  L = VclSloCoo . (6) 

Then,  we consider the proposed treatment of Tglass as the percolation threshold. First of all, it should be 

noted that the connectivity of the molecular chain skeleton is determined by locally ordered  regions, and the 

skeleton of continuous bondings is formed at the temperature  Tglass [1 1 ] with the corresponding value ~'cl = 0. It 

seems at first glance that the formation of a continuous bonding skeleton under  the condition of Poo = ~cl = 0 has 

no physical meaning. However, at T > Tgtass a local order  also exists, but this is the dynamical  order ,  i.e., with a 

substantially smaller lifetime, which does not allow one to associate it with the "frozen" local order  character ized 

242 



tn~cl 
0 

-0.5 

-1.0 

-/.5 

J _  

tn%t 
-0.5 

-/.0 

-/.5 

-2.0 I I I 1 

3..5 4.0 4.5 50 1,naT 
Fig. 1. Dependences  of relat ive fract ion of clusters  ~'cl on t empera tu re  

d i f fe rence  (Tglass- T) = AT in d o u b l e  l o g a r i t h m i c  c o o r d i n a t e s  fo r  

epoxypolymers EP-I  (1) and EP-2 (2). 

TABLE 1. Characteristics of Percolation Clusters 

Parameter  

/3 
Y 
"V 

fl / v  

df 

Experimental ly evaluated parameters 

EP-1 

0.36 

1.28 

0.67 

0.537 

2.46 

EP-2 

0.58 

2.28 

1.15 

0.504 

2.50 

Theoret ical ly calculated 
parameters  [1 ] 

0.40 

1.84 

0.88 

0 . 4 5 5  

2.545 

by V d or ~Oci. Upon passing Tglass, the local order  becomes "frozen," which corresponds to a jump in all parameters  

character izing the polymer  thermodynamics  at Tglass. Nevertheless ,  we consider  approaching the percolation 

threshold only from the side of T < Tglass, since for T > Tglass the condition ~o d = 0 is satisfied automatically.  

Under  certain conditions, both the concentration and other  variables can be used as X. For example,  when 

describing gelation within the framework of percolation models, the reaction time is used [18 ]. It is evident that 

for a system undergoing thermally induced fluctuations, such as the cluster network, the temperature  is such a 

variable. The necessary condition of this substitution is the monotonic behavior of the function used in the vicinity 

of the percolation threshold,  which is satisfied for ~Ocl = f iT)  in the neighborhood of Tglass for T < Tglass [4 ]. 

Under  the conditions considered, relationship (1) can be written as follows [3 l: 

~Ocl _ (Tglass -- T)  fl ' (7) 

where T and Tglass a re  interchanged due to the inequality Tglass > T. It should be noted that, inasmuch as all the 

tests were carried out at T = 293 K, Eq. (7) in essence yields a dependence of ~od on Tglass for the EP. Figure 1 

presents log-log plots of ~o d vs (Tglass - T) for EP-I  and EP-2. The plots are linear, which makes it possible to 

calculate the exponent/3 from their tangent. The value of/3 equals 0.36 for EP-1 and 0.58 for EP-2 (see Table  1), 

which is quite close to the theoretical "geometrical" value/3 = 0.40 I1 ]. Therefore ,  the cluster s t ructure  of the 

epoxypolymers under  consideration is a percolation cluster with percolation threshold Tglass. This means that the 

glass t ransi t ion in polymer  networks is a phase transi t ion,  and ~o d is the o rde r  pa rame te r  [1 ]. T h e  same 

circumstance implies that general regularities of the percolation theory [1 ] can be applied to the description of the 

structure of epoxypolymers.  Thus,  the number  of nodes n of a finite cluster depends on the dimensionless deviation 

of the concentration C for the critical value (C = ( X  - X p ) / X p  [1 ]) when C --, 0 in the following manner:  
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Fig. 2. Dependences of number of nodes (segments) in a finite cluster F/ 2  

on dimensionless temperature deviation CT = (Tglass-  T)/Tglass in double 

logarithmic coordinates for epoxypolymers EP-I  (1) and EP-2 (2). 

II - -  ( C T )  - 7  (8) 

For a cluster  structure,  the number  of segments per cluster,  which equals F / 2  (F being the cluster  

functionality) as this is an analog of the stretched-chain crystaliite [ 19 ], should be taken as n, and the parameter  

(Tglass- T)/Tglass should be taken as CT. Figure 2 presents corresponding dependences  in double logarithmic 

coordinates, and values of the quantity 7 calculated for a three-dimensional  percolation cluster [ 1 ] from the tangent 

are presented in Table 1. 

Quanti tat ive deviations of values of the exponents  fl and  7 obta ined in the present  work from their  

theoretical values [1 ] should be noted. In addition to the usual statistical error,  objective reasons for the deviations 

exist. First, the theoretical values of the exponents obtained in model calculations do not take into account a number  

of factors affecting actual systems (e.g., steric hindrances [18 ]). However, the main reason for the deviation is the 

fact that in the case of percolation on fractals the value of the exponents depends strongly on the fractal geometry  

[20], i.e., on their fractal dimensionality [121. 

As is well known [I ], structures behaving as fractals on small-length scales and as homogeneous objects 

on large-length scales are known as homogeneous fractals. It has been shown experimental ly [21 ] that the fractal 

behavior in amorphous polymers is observed on scales from several to - 5 0  A. It should be noted that this l inear 

scale exactly corresponds to the limits of the cluster structure. For this structure, the length of the statistical segment 

lseg is the lower l inear scale, and the intercluster distance R d corresponds to the upper linear scale. For the 

epoxypolymers under  investigation, the quantity lseg varies within the limits of 4 . 2 3 -6 .5 9  A, and Rcl varies within 
o 

the limits of 16 .7-35 .3  A. [9 ], which corresponds well to the linear limits of the fractal behavior presented in [211. 

Percolation clusters are homogeneous fractals when X ~ Xp (i.e., the epoxypolymer  s tructure has a fractal behavior 

when Tglass ;~ T or, with regard to the above considerations, when Tglass < T). In o ther  words, the combination of 

the data under  considerat ion assumes that the well-known fractal nature  of the polymer s tructure (including 

polymer networks 122 ]) is determined by the presence of a cluster structure or, more precisely, by the frozen local 

order. However, there is some disagreement on the value of the fractal dimension df of the polymer s t ructure  under  

the general constraint 2 < df < 3 [23 ]. Thus,  in [21 l, based on theoretical propositions by Alexander  and Orbach 

[24 ], a conclusion has been drawn that the quantity dr equals 2 for an ideal linear disordered polymer,  and lies 

within the limits of 2 . 0 - 2 . 2  for real polymers. Let us derive several simple estimates of df for the epoxypolymers  

under investigation. The  following relationship holds for a percolation cluster [11: 

dr = d - ~ / v ) ,  (9) 

where d is the dimensionality of the Euclidean space in which the fractal is embedded,  v is one of the critical 

exponents of the percolation cluster defined from the relationship I1 I 
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Fig. 3. Dependence of fractal dimensionality dr of structure on entropy change 

A S  i for epoxypolymers EP-I  (1) and EP-2 (2). 

d v = 2 f l +  y .  (10) 

The  estimate from Eq. (10) with the use of the earlier derived values off l  and 7 (for d = 3) yields v = 0.67 for EP-1 

and v = 1.15 for EP-2,  which also agrees well with the theoretical value v = 0.88 [1 ] (see Table  1). The parameters  

calculated by Eq. (4) are listed in Table 1 and equal dr = 2.46 and 2.50 for EP-1 and EP-2,  respectively (for the 

percolation cluster, dr - 2.545 [1 ]). 

Balankin [25 ] proposed the following formula for estimation of df: 

df = (d - 1) (l + , ) ,  ( l l )  

where the Poisson coefficient/~ can be estimated from mechanical tests using the following relationship [5 ]: 

Ocreep/E = (1 - 2 ~ ) / [ 6  (1 + ~) 1. (12) 

Quantities df evaluated from Eq. (11) for epoxypolymers EP-1 and EP-2 are within the limits of 2.56 to 

2.73, which agrees ra ther  well with estimates obtained in the present work but substantially exceed the earlier 

estimates [21, 24 1. 

In [21 ], the following relationship for percolation clusters has been presented: 

dsl = d f / 'd  > 1 . (13) 

By using values of dsl and fir for the epoxydian polymer, from [21 ], we calculated the value of dr for tile 

polymer, which appeared to be equal to 2.25. The  quantity is again close to the above estimates, and it should be 

noted that the application of Eq. (13) to epoxypolymers became possible owing to the identification of their  s t ructure 

as a percolation system. 

As is known [26 ], the dimensionality spectrum (e.g., d L ds, and d) is required to provide a description of 

fractals. Dimensionalities proposed for characterization of fractal objects can, to a first approximation,  be divided 

into two groups, with dimensionalities derived purely from geometrical considerations related to one of the groups, 

and characteristics related to the information theory related to another  group. The  latter reflects the degree of 

inhomogeneity of the fractal under  consideration [26 1. The  Lyapunov exponent  ,1., which increases with the degree 

of fractal inhomogenei ty and is connected with the information dimensionality of a multifractal Dl 127 ], can be 

related to this group. The  quantity df is connected with .,1. by the following relationship 128 ]: 

df = S i t 2 .  (14) 

where S i is the ent ropy of the system. The change in the entropy A S  i can be est imated by the following simple 

formula 129 1: 
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AS i = 3ffree In ffree k . (15) 

The quantity ]'free is calculated in turn as follows [5 ]: 

]'free = 0.017 (1 + /z ) / (1  - 2/1 ) . (16) 

Figure 3 presents the quantity df calculated by Eq. (11) as a function of A S  i as determined from Eq. (15) 

for the epoxypolymers under consideration. The plot has a number of interesting features. First, extrapolation of 

the linear plot of d r ( A S  i) to A S  i = 0 yields the value of 6f. It follows from Eq. (15) that the condition A S  i = 0 

corresponds to ]'free - 0. This condition corresponds to the close-packed epoxypolymer structure, i.e., in the case 

of an amorphous polymer, df -- 2 is reached in the case of close packing, but not for an ideal disordered polymer, 

as has been assumed in [24 ]. Second, the value of df -- 3 is reached at the value of A S  i corresponding to ffree 

= 0.157. To the authors '  knowledge, this is the maximum theoretically predictable value of the relative free volume 

at Tglass [30 ]. In other words, the value of df = 3 corresponds to the devitrified polymer state, i.e., the breakdown 

of the local frozen order [10]. This circumstance again points to the relationship of the local order and fractal 

nature of amorphous polymers. Third, the linear behavior of dr(AS) means that, according to Eq. (I 4), the condition 

2 = const is satisfied. This assumes the necessity of applying multifractal analysis methods to the description of the 
structure of glassy polymers, since each epoxypolymer is characterized by a different set of dimensionalities: the 

constant D and variable df. In addition, it follows from Eq. (14) that the fractal dimensionality of the epoxypolymer 

structure is uniquely determined by the disorder degree (ASi ) .  

Thus, the results obtained in the present work have shown that at the glass-transition temperature, a 

structure that is a percolation cluster and well described within the framework of the model [4, 5 ] is formed in 

epoxypolymers. This circumstance assumes that the glass transition in epoxypolymers is a phase transition of the 

second kind, and the quantity 'Pd is the order parameter. In addition, this serves as an additional substantiation 
o 

of the fractal character of polymer networks (at T ~ Tglass) within the linear-dimension region - 3 - 5 0  A. The fractal 

dimensional i ty  of the epoxypolymer structure is substantial ly higher than has been assumed earlier and is 

determined by its disorder degree. The loss of the fractal character by the epoxypolymer structure (at df = d) is 

achieved at the glass-transition temperature. 

N O T A T I O N  

Tglass, glass-transition temperature; Ka, oligomer/solidifier ratio; v n, density of chemical bonding network; 

P~, power of infinite cluster; Xp, percolation threshold; fl, exponent of the scaling relationship; ~Pd, relative fraction 

of clusters; n, number of nodes of a finite cluster; C = (X - Xp)/Xp, concentration; F, cluster functionality; 7, 

exponent; grcreep, yield limit; E, elasticity modulas; dsb superlocalization index; ]'free, relative free volume; k, the 

Boltzmann constant; d, spectral dimensionality. Indices: glass, glass transition; n, network; p, percolation; seg, 

segment; f, fractal; s, spectral, sl, super localization. 
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